IEEE International Conference on Consumer Electronics 2018

Multi-Frame Super Resolution Using Frame Selection and Multiple Fusion for 250 Million Pixel Images

Yinhao Li[†], Yutaro Iwamoto[†], Katsuhisa Ogawa^{††}, Yen-Wei Chen[†], Member, IEEE [†]Ritsumeikan University, Shiga, Japan ^{+†}Canon Inc., Kanagawa, Japan

Introduction

Background

- \succ An extremely high-resolution image can be taken for a wide area by using the camera with a built-in Canon's APS-H size 250Mpixel CMOS image sensor(Fig. 1)
- > Quality of the an enlarged tiny part in this kind of image tends to get poor due to spatial deformations and noise mainly caused by long distance and atmosphere turbulence.
- \succ Multi-frame super-resolution performs well in enhancing the quality of images deformed by deformation and blur

250Mpixel-CMOS-Imge-Sensor-Specifcation

Frame Selection

(a) Samples of initial frames

Fig.1 Canon's 250 million pixel CMOS-image-sensor specifications and photograph

250 Million Pixel Images

(b) Edge images of (a)

(c) Sample of reconstructed frame

Frame selection 1: To eliminate degraded images caused by atmospheric turbulence before registration

Frame selection 2: To reduce processing time of blur removal after multiple fusion

Multiple Fusion

Conventional multi-frame super-resolution

SR resolution	+	HR	

Proposed multi-frame super-resolution

Fig.2 Example of 250 million full-pixels images (top), part of the full-pixels image (middle),

Experimental Results

and its three detailed structure images (bottom) before processing

Conclusion and Future Work

Contributions

(1) We proposed a frame selection scheme based on its edge image for fast and accurate SR reconstruction.

(2) We proposed a multiple fusion scheme, which is robust to blur, deformation, and noise. The computation cost is almost as the same as the conventional single scheme.

Future Work

Image restoration using deep convolutional neural networks

Quantitative Evaluation with Simulated Images^[1]

		TABLE I			
QUAN	NTITATIVE COMPAR	ISON OF OUR	PROPOSED METH	OD WITH	
	CONVENTIONAL	L MULTI-FRAN	E SR METHODS		_
SIDBA	LR image	Rec	onstructed HR in	nage	_
	$(\mu \pm \sigma)^a$	IBP	L1+BTV	Our	
				Method	_
Pepper	20.57 ± 1.40	22.41	22.28	23.92	
Airplane	19.53 ± 1.28	20.96	20.92	22.43	
Lenna	21.17 ± 1.22	22.51	22.29	23.70	
Sailboat	19.39 ± 1.12	21.58	21.62	22.68	
Parrots	21.90 ± 0.76	23.93	23.79	24.35	•

PSNR

^a μ : Mean, σ : Standard Deviation

[1] Y. Li, Y. Iwamoto, K. Ogawa, Y.-W. Chen, "Computer Simulation of Image Distortion by Atmospheric Turbulence Using Time-Series Image Data with 250-Million-Pixels," International J. Computer Electrical Eng., Vol.10, pp.565-573, 2018.