HOME |日本語 |English

Achievement


著書

論文
特許
受賞
メディア報道
外部資金
学会活動

論文


 

2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003-

2017年度発表論文

Journals(with referees)
[1] Yingying Xu, Lanfen Lin, Hongjie Hu, Dan Wang, Yitao Liu, Jian Wang, Xian-Hua Han, Yen-Wei Chen: “Texture-Specific Bag of Visual Words Model and Spatial Cone Matching Based Method for the Retrieval of Focal Liver Lesions Using Multiphase Contrast- Enhanced CT Images,” International Journal of Computer Assisted Radiology and Surgery, Vol.13, No.1, pp.151-164 (2018)(SCI, Impact factor: 1.8)(こちら)
[2] Yinhao Li, Yutaro Iwamoto, Katsuhisa Ogawa, Yen-Wei Chen: “Computer Simulation of Image Distortion by Atmospheric Turbulence Using Time-Series Image Data with 250-Million-Pixels,” International Journal on Computer Electrical Engineering, Vol.10, pp.53-61 (2018)(こちら)
[3] Xu Qiao, Xiaoqing Liu, Yen-Wei Chen, Zhi-Ping Liu: “Multi-Dimentional Data Reperensentation Using Linear Tensor Coding,” IET Image Processing, Vol.11, No.7, pp.492-501 (2017) (Impact Factor: 1.3)(こちら)
[4] Chunhua Dong, Xiangyan Zeng, Lanfen Lin, Hongjie Hu, Xianhua Han, Masoud Naghedolfeizi, Dawit Aberra and Yen-Wei Chen: “An Improved Random Walker with Bayes Model for Volumetric Medical Image Segmentation,” Journal of Healthcare Engineering, Vol.2017, Article ID 6506049, 11 pages (2017). (SCI, Impact factor: 0.965)(こちら)
[5] Jia-Qing Liu, Ryoma Fujii , Tomoko Tateyama , Yutaro Iwamoto , Yen-Wei Chen: “Kinect-Based Gesture Recognition for Touchless Visualization of Medical Images,” International Journal on Computer Electrical Engineering, Vol.9, pp.421-429 (2017)(こちら)
[6] Xian-Hua Han and Yen-Wei Chen: “Generalized Aggregation of Sparse Coded Multi-Spectra for Satellite Scene Classification,” ISPRS Int. J. Geo-Inf. Vol.6, pp.175-191 (2017). (SCI, Impact factor: 1.502)(こちら)
[7] 王汀, 陳延偉, 石崎義公, 宮本優, 服部智仁: “画像処理によるスローアウェイチップ摩耗における自動検査法の開発,” 電気学会論文誌C, Vol.137, No.11, pp.1488-1494 (2017).(こちら)
International Conference Papers (with referees)
[1] Yutaro Iwamoto, Xian-Hua Han, Akihiko Shiino, Yen-Wei Chen: “Fast Super-Resolution With Iterative Guided Back Projection For 3D MR Images,” Proc. of SPIE Medical Imaging, Houston, USA, Feb.10-15, 2018,
[2] Kyohei Takeda, Yutaro Iwamoto Keisuke Uemura, Masaki Takao, Nobuhiko Sugano, Yoshinobu Sato, Yen-Wei Chen, “Reconstruction of Micro CT-like Images from Clinical CT Based on Machine Learning: A Preliminary Study,” Proc. of SPIE Medical Imaging, Houston, USA, Feb.10-15, 2018,
[3] Titinunt Kitrungrotsakul, Xian-Hua Han, Yutaro Iwamoto, Wei Xiong, Lanfen Lin and Yen-Wei Chen, “Multi-pathways CNN for robust vascular segmentation,” Proc. of SPIE Medical Imaging, Houston, USA, Feb.10-15, 2018,
[4] Yinhao Li, Yutaro Iwamoto, Katsuhisa Ogawa, Yen-Wei Chen: “Multi-Frame Super Resolution Using Frame Selection and Multiple Fusion for 250 Million Pixel Images,” Proc. of IEEE International Conference on Consumer Electronics, Las Vegas, USA, Jan. 12-14, 2018.
[5] Liying Peng, Lanfen Lin, Hongjie Hu, Xiaoli Ling, Dan Wang, Xianhua Han, Yen-Wei Chen: “Joint Weber-Based Rotation Invariant Uniform Local Ternary Pattern for Classification of Pulmonary Emphysema in CT Image,” Proc. of The 24th IEEE International Conference on Image Processing (ICIP2017), Beijing, China, Sep.17-20, 2017.
[6] Neda Sangsefidi, Amir Hossein Foruzan, Ardeshir Dolati, Yen-Wei Chen: “Incorporating a Local Appearance Model in the Graph-Cuts Algorithm to Extract Small Hepatic Vessels,” Proc. of The 24th IEEE International Conference on Image Processing (ICIP2017), Beijing, China, Sep.17-20, 2017.
[7] Qingqing Chen, Mingzhong Chen, Hongjie Hu, Qiaowei Zhang, Lanfen Lin, Yen-Wei Chen: “A Comparative Study of Computer-aided Diagnosis and Radiologists: LI-RADS-Based Assessment of Hepatocellular Carcinoma,” RSNA 103rd Scientific Assembly and Annual Meeting (RSNA2017), Chicago, USA, Nov.26-Dec.1, 2017.
[8] Jian Wang, Xian-Hua Han, Yingying Xu, Lanfen Lin, Hongjie Hu, Chongwu Jin, and Yen-Wei Chen: “Tensor Sparse Representation of Temporal Features for Content-Based Retrieval of Focal Liver Lesions Using Multi-Phase Medical Images,” Proc. of The 19th IEEE International Symposium on Multimedia (ISM2017), Taichung, Taiwan, Dec.11-13, 2017.
[9] Jia-Qing Liu, Ryoma Fujii , Tomoko Tateyama , Yutaro Iwamoto , Yen-Wei Chen: “Kinect-Based Gesture Recognition for Touchless Visualization of Medical Images,” 2017 4th International Conference on Mechanical, Electronics and Computer Engineering (CMECE 2017), Phnom Penh, Cambodia, Sep. 14-16, 2017. Best Student Presentation Award
[10] Yinhao Li, Yutaro Iwamoto, Katsuhisa Ogawa, Yen-Wei Chen: “Computer Simulation of Image Distortion by Atmospheric Turbulence Using Time-Series Image Data with 250-million-pixels,” 2017 4th International Conference on Mechanical, Electronics and Computer Engineering (CMECE 2017), Phnom Penh, Cambodia, Sep. 14-16, 2017.
[11] Mingzhong Chen, Lanfen Lin, Qingqing Chen, Hongjie Hu, Qiaowei Zhang, Yingying Xu, and Yen-Wei Chen: “Computerized Features for LI-RADS Based Computer-Aided Diagnosis of Liver Lesions,” Innovation in Medicine and Healthcare 2017, Eds. Yen-Wei Chen et al., Springer, pp.146-156, 2017 (Vilamoura, Portugal, June 21-23, 2017). DOI: 10.1007/978-3-319-59397-5_16
[12] Yoshihiro Todoroki, Xian-Hua Han, Yutaro Iwamoto, Lanfen Lin, Hongjie Hu and Yen-Wei Chen: “Detection of Liver Tumor Candidates from CT Images Using Deep Convolutional Neural Networks,” Innovation in Medicine and Healthcare 2017, Eds. Yen-Wei Chen et al., Springer, pp.140-145, 2017 (Vilamoura, Portugal, June 21-23, 2017). DOI: 10.1007/978-3-319-59397-5_15
[13] Si-Hai Yang, Xian-Hua Han, Yen-Wei Chen: “Automatic Segmentation of Cellular/ Nuclear Boundaries Based on the Shape Index of Image Intensity Surfaces,” Innovation in Medicine and Healthcare 2017, Eds. Yen-Wei Chen et al., Springer, pp.67-77, 2017 (Vilamoura, Portugal, June 21-23, 2017). DOI: 10.1007/978-3-319-59397-5_8
[14] Titinunt Kitrungrotsakul,Xian-Hua Han, Yutaro Iwamoto, Yen-Wei Chen: “Automatic and Robust Vessel Segmentation in CT Volumes Using Submodular Constrained Graph,” Innovation in Medicine and Healthcare 2017, Eds. Yen-Wei Chen et al., Springer, pp.57-66, 2017 (Vilamoura, Portugal, June 21-23, 2017). DOI: 10.1007/978-3-319-59397-5_7
[15] Zhuofu Deng, Takahiko Kitamura, Zhiliang Zhu, Min Xu, Kun Xiong, Yen-wei Chen: “Semi-automatic Segmentation of Paranasal Sinuses from CT Images Using Active Contour with Group Similarity Constraints,” Innovation in Medicine and Healthcare 2017, Eds. Yen-Wei Chen et al., Springer, pp.89-98, 2017 (Vilamoura, Portugal, June 21-23, 2017). DOI: 10.1007/978-3-319-59397-5_10
[16] Zhuofu Deng, Yen-Wei Chen, Yi Wang, Zhiliang Zhu and Ming Xu: “A Collaborative and Mobile Platform for 3D Medical Image Analysis: A Preliminary Study,” Innovation in Medicine and Healthcare 2017, Eds. Yen-Wei Chen et al., Springer, pp.130-139, 2017 (Vilamoura, Portugal, June 21-23, 2017). DOI: 10.1007/978-3-319-59397-5_14
[17] Ayano Nishimoto, Yutaro Iwamoto, Gang Xu and Yen-Wei Chen: “Stacked Sparse Autoencoder for Efficient Representation and Unsupervised Classification of Handwritten Digit Images ,” The 13th Joint Workshop on Machine Perception and Robotics, Beijing, China, Oct.15-16, 2017.
[18] Shohei Yonetsu,Yutaro Iwamoto, Yen-Wei Chen: “Two-Step YOLOv2 for Accurate License Plate Detection,” The 13th Joint Workshop on Machine Perception and Robotics, Beijing, China, Oct.15-16, 2017.
[19] Zhichao Du, Hiroki Yoshihara, Masataka Seo, Naoki Matsushiro, Yen-Wei Chen: “Landmark Detection of Facial Paralysis Using Deep Convolutional Neural Network,” The 13th Joint Workshop on Machine Perception and Robotics, Beijing, China, Oct.15-16, 2017.
[20] Yutaro Iwamoto: “Medical Imaging Analysis using Image Processing and Machine Learning,” The 3rd International Symposium on “Artificial Intelligence (AI) and Medicine for Health Care”, Busan, Korea, Nov. 17, 2017.
[21] Yusuke Yoshinobu, Yutaro Iwamoto, Akihiko Shiino, Yen-Wei Chen: “Detection of Brain Lacunar Infarction Using Deep Learning,” The 3rd International Symposium on “Artificial Intelligence (AI) and Medicine for Health Care”, Busan, Korea, Nov. 17, 2017.
Domestic Conference Presentations
[1] 榎木谷侑生, 岩本祐太郎, 陳延偉, "Adversarial U-Net for Liver Segmentation", 電子情報通信学会技術報告書, Vol. 117, No. 518, MI2017-63, pp.67-68 (2018.3)
[2] 米津翔平, 岩本祐太郎, 陳延偉: “2段階YOLOv2を用いた極小サイズのナンバープレート検出,” ビジョン技術の実利用ワークショップ(ViEW2017), IS2-A1, 横浜, 2017.12.7-8.
[3] 轟佳大,韓先花,岩本祐太郎,Lanfen Lin,Hongjie Hu,陳延偉:”深層学習技術を用いたCT画像からの肝臓腫瘍候補の検出,”第8回横幹連合コンファレンス, P14-S, 京都,2017.12.2-3.
[4] 山本敬彦,瀬尾昌孝,北島利浩,陳延偉:” 時系列変動を考慮した統計形状モデルによる視線補正,” 第22回日本顔学会大会, O4-3, 関西学院大学,2107.9.9-10.
[5] 杜智超,瀬尾昌孝,陳延偉: “Deep learningによる特徴点の自動推定(第二報),”第22回日本顔学会大会, O5-3, 関西学院大学,2107.9.9-10.
[6] Wang Jian, Han Xian-Hua, Xu Yingying, Lin Lanfen, Hu Hongjie, Jin Chongwu, Chen Yen-Wei:“Learning an overcomplete codebook of tensor local structure for multi-phase medical image retrieval,” 第36回日本医用画像王学会大会,OP13-1, p.67, 岐阜,2017.7.27-29.
[7] 韓先花, 陳延偉:”スパース自己符号化器を用いてHEp-2細胞画像認識システム,” 第36回日本医用画像王学会大会,OP14-4, p.64, 岐阜,2017.7.27-29.
[8] Titinunt Kitrungrotsakul, Xian-Hua Han, Yutaro Iwamoto, Lanfen Lin, Wei Xiong, and Yen-Wei Chen, “Automatic Vessel Segmentation Using a Combined Deep Network,” 第36回日本医用画像王学会大会,OP11-1, p.56, 岐阜,2017.7.27-29.
[9] Wang Yi, Liu Jiaqing, Deng Zhuofu, Zhu Zhiliang, Chen Yen-Wei: “Development of a Collaborative and Mobile Platform for 3D Medical Image Analysis,” 第36回日本医用画像王学会大会,OP5-6, p.45, 岐阜,2017.7.27-29.
[10] Jiaqing Liu, Ryoma Fujii, Tomoko Tateyama, Yutaro Iwamoto and Yen-Wei Chen: “Kinect-Based Gesture Recognition for Touchless Visualization of Medical Images,” 第36回日本医用画像王学会大会,OP2-3, p.32, 岐阜,2017.7.27-29.
[11] 辻永成樹,山口展生,劉家慶,岩本祐太郎,健山智子,陳延偉:”L字スクリーンとKinectを用いた体感型VRキャンパス案内システム,”平成29年電気関係学会関西連合大会,G12-4, 近畿大学, 2017.11.25-26.
[12] 吉延友佑,椎野顯彦,岩本祐太郎,陳延偉: “深層学習を用いたラクナ梗塞初期候補検出精度の向上,” 平成29年電気関係学会関西連合大会,G12-8, 近畿大学, 2017.11.25-26.
[13] 佐藤亮輔,韓先花,岩本祐太郎,陳延偉: “Deep Convolutional Neural Networkを用いた食事画像認識,” 平成29年電気関係学会関西連合大会,G12-9, 近畿大学, 2017.11.25-26.
[14] 武田匡平,岩本祐太郎, 上村圭亮, 高尾正樹, 菅野伸彦, 佐藤嘉伸, 陳延偉: “Micro CT画像を事例としたCT画像の高解像度化,”電子情報通信学会技術報告書, Vol.117, No. 47, MI2017-5, pp.25-29 (2017-5)
[15] 辻亜友実, 瀬尾昌孝,武藤裕子,陳延偉: “機械学習を用いた個人の顔特徴に応じたメイクシミュレーション,” Vol.117, No. 48, IE2017-14, pp.71-74 (2017-5)